Maraviroc-Mediated Lung Protection following Trauma-Hemorrhagic Shock

نویسندگان

  • Fu-Chao Liu
  • Chih-Wen Zheng
  • Huang-Ping Yu
چکیده

Objectives. The peroxisome proliferator-activated receptor gamma (PPARγ) pathway exerts anti-inflammatory effects in response to injury. Maraviroc has been shown to have potent anti-inflammatory effects. The aim of this study was to investigate whether PPARγ plays an important role in maraviroc-mediated lung protection following trauma-hemorrhage. Methods. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of maraviroc (3 mg/kg, intravenously) with and without a PPARγ inhibitor GW9662 (1 mg/kg, intravenously), GW9662, or vehicle was administered. Lung water content, tissue histology, and other various parameters were measured (n = 8 rats/group) 24 hours after resuscitation. One-way ANOVA and Tukey's testing were used for statistical analysis. Results. Trauma-hemorrhage significantly increased lung water content, myeloperoxidase activity, intercellular adhesion molecule-1, interleukin-6, and interleukin-1β levels. These parameters significantly improved in the maraviroc-treated rats subjected to trauma-hemorrhage. Maraviroc treatment also decreased lung tissue damage as compared to the vehicle-treated trauma-hemorrhaged rats. Coadministration of GW9662 with maraviroc abolished the maraviroc-induced beneficial effects on these parameters and lung injury. Conclusion. These results suggest that PPARγ might play a key role in maraviroc-mediated lung protection following trauma-hemorrhage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation of the Unfolded Protein Response During Hepatocyte and Cardiomyocyte Apoptosis In Trauma/Hemorrhagic Shock

Trauma with hemorrhagic shock (T/HS), has been shown to result in liver injury marked by hepatocyte apoptosis and heart failure marked by cardiomyocyte apoptosis, both of which we have shown to be prevented by IL-6 administration at resuscitation, and Stat3 largely mediated this. As specific mediators have not been delineated, we investigated the unfolded protein response (UPR), which, with mar...

متن کامل

Immunomodulatory effects of hypertonic resuscitation on the development of lung inflammation following hemorrhagic shock.

Hypertonic resuscitation fluids are known to be effective in restoring circulating volume in the hypovolemic trauma patient. Previous studies have suggested that hypertonicity might exert effects on immune cells leading to an altered host response. The present studies evaluated the effect of hypertonic resuscitation on the development of lung injury in a hemorrhagic shock model in which anteced...

متن کامل

Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure.

Recent studies demonstrate that mechanisms underlying gut barrier failure include systemic processes and less studied luminal processes. We thus tested the hypothesis that mucus layer oxidation is a component of trauma/hemorrhagic shock-induced gut injury and dysfunction. Male Sprague-Dawley rats underwent trauma/hemorrhagic shock. Controls underwent trauma only. Mucus from the terminal 30 cm o...

متن کامل

Ursolic Acid Inhibits Superoxide Production in Activated Neutrophils and Attenuates Trauma-Hemorrhage Shock-Induced Organ Injury in Rats

Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hep...

متن کامل

Hemorrhagic shock augments lung endothelial cell activation: role of temporal alterations of TLR4 and TLR2.

Hemorrhagic shock (HS) due to major trauma predisposes the host to the development of acute lung inflammation and injury. The lung vascular endothelium is an active organ that plays a central role in the development of acute lung injury through generating reactive oxygen species and synthesizing and releasing of a number of inflammatory mediators, including leukocyte adhesion molecules that reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016